This is a catalog of results I have learned in my Abstract Algebra course, alongside proofs for each.
Apologies in advance as all statements are presented as theorems for my sake.
My favorites got a tombstone for how well they've been put to rest.

Theorem 1. Cancellation Law
Let G be a group. If ab=ac then b=c\text{Let } G \text{ be a group. If } ab = ac \text{ then } b = c

Theorem 2. Uniqueness of Inverse
For any group, the inverse of any element a is unique\text{For any group, the inverse of any element } a \text{ is unique}

Theorem 3. Subgroup Test
Let G be a group and let HG.Then H is a subgroup of G iff H is non-empty anda,bH we have a1bH\text{Let } G \text{ be a group and let } H \subseteq G. \\ \text{Then } H \text{ is a subgroup of } G \text{ iff } H \text{ is non-empty} \text{ and} \\ \forall a, b \in H \text{ we have } a^{-1}b \in H

Theorem 4. Subgroup Equivalence Relation
Let G be a group and let HG.The relation x,yGx1y(x)1    x1yH,is an equivalence relation.\text{Let } G \text{ be a group and let } H \leq G. \\ \text{The relation } \forall x, y \in G \\ x^{-1}y \sim (x)^{-1} \iff x^{-1}y \in H, \\ \text{is an equivalence relation.}

Theorem 5. Left Cosets of x are Equivalence Classes of x
Let HG and x1y(x)1    x1yH.Then xG, we have [x]={xh  hH}.\text{Let } H \leq G \text{ and } x^{-1}y \sim (x)^{-1} \iff x^{-1}y \in H. \\ \text{Then } \forall x \in G, \text{ we have } [x] = \{xh \ | \ h \in H\}.

Theorem 6. Intersection of Subgroups
Let G be a group and let H and K be two subgroups.Then HK is also a subgroup of G\text{Let } G \text{ be a group and let } H \text{ and } K \text{ be two subgroups.} \\ \text{Then } H \cap K \text{ is also a subgroup of } G

Theorem 7. Homomorphism Properties
Let ϕ:GK be a homomorphism.Then ϕ(eG)=eK and aG, ϕ(a1)=(ϕ(a))1.\text{Let } \phi: G \to K \text{ be a homomorphism.} \\ \text{Then } \phi(e_G) = e_K \text{ and } \forall a \in G, \ \phi(a^{-1}) = (\phi(a))^{-1}.

Theorem 8. Image of a Subgroup is a Subgroup
Let ϕ:GK be a homomorphism. and let HG.Then ϕ(H)K.\text{Let } \phi: G \to K \text{ be a homomorphism. and let } H \leq G. \\ \text{Then } \phi(H) \leq K.

Theorem 9. Kernel of a Homomorphism is a Subgroup of The Domain
Let ϕ:GK be a homomorphism. Then ker(ϕ)G\text{Let } \phi: G \to K \text{ be a homomorphism.} \text{ Then } \ker(\phi) \leq G

Theorem 10. Injective Homomorphism
A homomorphism ϕ:GK is injectiveiff ker(ϕ)={e}\text{A homomorphism } \phi: G \to K \text{ is injective} \\ \text{iff } \ker(\phi) = \{e\}

Theorem 11. Normal Subgroup Properties
Let HG. then the following are equivalent:1) HG2) xHyH=xyH x,yG is well-defined on the coset space G/H3) xG we have xH=Hx.\text{Let } H \leq G. \text{ then the following are equivalent:} \\ \quad \text{1) } H \trianglelefteq G \\ \quad \text{2) } xH * yH = xyH \ \forall x, y \in G \\ \quad \quad \ \text{is well-defined on the coset space G/H} \\ \quad \text{3) } \forall x \in G \text{ we have } xH = Hx.

Theorem 12. Quotient Group
Let HG. Then G/H with coset multiplication is a group\text{Let } H \trianglelefteq G. \text{ Then } G/H \text{ with coset multiplication is a group}

Theorem 13. First Isomorphism Theorem
Let G and K be groups,and let ϕ:GK be a homomorphism.Then ker(ϕ)G, and G/ker(ϕ)Im(ϕ) canonically.\text{Let } G \text{ and } K \text{ be groups,} \\ \text{and let } \phi: G \to K \text{ be a homomorphism.} \\ \text{Then } \ker(\phi) \trianglelefteq G, \text{ and } G/\ker(\phi) \cong Im(\phi) \text{ canonically.}

Theorem 14. The Group of Automorphisms
The set Aut(G) with composition is a group.\text{The set Aut}(G) \text{ with composition is a group.}

Theorem 15. Inner Automorphism
Let gG.Define ϕg:GG such that ϕg(x)=gxg1  xG.ϕg is an automorphism.\text{Let } g \in G. \\ \text{Define } \phi_g: G \to G \text{ such that } \phi_g(x) = gxg^{-1} \ \ \forall x \in G. \\ \phi_g \text{ is an automorphism}.

Theorem 16. Subscript of Inner Automorphisms is Homomorphic
The map Φ:GAut(G) defined by Φ(g)=ϕg  gG, is a homomorphism.\text{The map } \Phi: G \to \text{Aut}(G) \text{ defined by } \\ \Phi(g) = \phi_g \ \ \forall g \in G, \text{ is a homomorphism.}

Theorem 17. The Inner Automorphisms Are A Normal Subgroup of Automorphisms
Inn(G)Aut(G)\text{Inn}(G) \trianglelefteq \text{Aut}(G)

Theorem 18. Sets of the Same Cardinality have Isomorphic Permutation Groups
Let X and Y be sets.If X=Y, then SXSY.\text{Let X and Y be sets.} \\ \text{If } |X| = |Y|, \text{ then } S_X \cong S_Y.

Theorem 19. Left Multiplication is a Bijective Permutation that is the Image of any Group
Let G be a group.For each aG define fa:GG by fa(x)=ax.Then fa is bijective  aG.Define j:GSG by j(a)=fa.Then j is an injective homomorphism.\text{Let } G \text{ be a group.} \\ \text{For each } a \in G \text{ define } f_a: G \to G \text{ by } f_a(x) = ax. \\ \text{Then } f_a \text{ is bijective } \ \forall a \in G. \\ \text{Define } j: G \to S_G \text{ by } j(a) = f_a. \\ \text{Then } j \text{ is an injective homomorphism.}

Theorem 20. Cayley's Theorem
Every Group is Isomorphic to a Subgroup of a Symmetric Group\text{Every Group is Isomorphic to a Subgroup of a Symmetric Group}

Theorem 21. In Finite Groups, Elements Have Finite Order (PP1 Q10)
Let (G,) be a finite group. Prove that for every aG a natural number n1 such that an=e.\text{Let } (G,*) \text{ be a finite group. Prove that for every } a \in G \\ \exists \text{ a natural number } n \geq 1 \text{ such that } a^n = e.

Theorem 22. Cycles are Equivalence Relations
Let σSn be fixed.Then the relation on {1,2,3,...,n}, 1i,jn, ij    σk(i)=j for some kZ,is an equivalence relation.\text{Let } \sigma \in S_n \text{ be fixed.} \\ \text{Then the relation on } \{1, 2, 3, ..., n\}, \\ \forall \ 1 \leq i, j \leq n, \ i \sim j \iff \sigma^{k}(i) = j \text{ for some } k \in \Z, \\ \text{is an equivalence relation.}

Theorem 23. Equivalence classes of a permutation times a transposition differs by 1
Let nN such that 2n, and σSn.Let 1ijn, and τ=(i j).Then the number of equivalence classes ofthe relations defined by σ and τσ differs by 1.\text{Let } n \in \N \text{ such that } 2 \leq n, \text{ and } \sigma \in S_n. \\ \text{Let } 1 \leq i \not= j \leq n, \text{ and } \tau = (i \ j). \\ \text{Then the number of equivalence classes of} \\ \text{the relations defined by } \sigma \text{ and } \tau \sigma \text{ differs by 1}.

Theorem 24. Any Permutation is the Product of Transpositions
Let n2. Any permutation σSnis a product of transpositions.\text{Let } n \geq 2. \text{ Any permutation } \sigma \in S_n \\ \text{is a product of transpositions.}

Theorem 25. A Permutation is either Odd or Even
A permutation σSn can’t be writtenas a product of an even number of transpositionsand an odd number of transpositions.\text{A permutation } \sigma \in S_n \text{ can't be written} \\ \text{as a product of an even number of transpositions} \\ \text{and an odd number of transpositions.}

Theorem 26. Parity Homomorphism
Let n2. Defineϕ:SnZ2 by ϕ(σ)={0,if σ is even1,if σ is oddThis is a homomorphism.\text{Let } n \geq 2. \text{ Define} \\ \phi: S_n \to \Z_2 \text{ by } \\ \phi(\sigma) = \begin{cases} 0, & \text{if } \sigma \text{ is even} \\ 1, & \text{if } \sigma \text{ is odd} \\ \end{cases} \\ \text{This is a homomorphism.}

Theorem 27. The Alternating Group is a Normal Subgroup of the Symmetric Group
AnSnA_n \trianglelefteq S_n

Theorem 28. Cosets of H have the same Cardinality as H
Let G be a finite group,and let HG.For every x,yG, the map f:xHyHdefined by f(xh)=yh  hHis a bijection.\text{Let G be a finite group,} \text{and let } H \leq G. \\ \text{For every } x, y \in G, \text{ the map } f: xH \to yH \\ \text{defined by } f(xh) = yh \ \ \forall h \in H \\ \text{is a bijection.}

Theorem 29. Pretty Much Lagrange's Theorem
Let G be a finite group, and HG.Then o(G)=o(H)[G:H].([G:H]=G:H= Number of distinct left cosets of H in G)\text{Let } G \text{ be a finite group, and } H \leq G. \\ \text{Then } o(G) = o(H) [G:H]. \\ ([G:H] = |G:H| = \text{ Number of distinct left cosets of H in G})

Theorem 30. Actually Lagrange's Theorem
Let G be a finite group, and HG.Then o(H) divides o(G).\text{Let } G \text{ be a finite group, and } H \leq G. \\ \text{Then } o(H) \text{ divides } o(G).

Theorem 31. Order of the Alternating Group
An=n!2  for n2.|A_n| = \frac{n!}{2} \ \ \text{for } n \geq 2.

Theorem 32. Direct Product of Groups is a Group
The set G=G1×G2 with operation  defined by (g1,g2)(h1,h2)=(g1h1,g2h2) for all g1,h1G1,g2,h2G2 is a group.\text{The set } G = G_1 \times G_2 \text{ with operation } \\ \text{ defined by } (g_1, g_2) \cdot (h_1, h_2) = (g_1h_1, g_2h_2) \\ \text{ for all } g_1, h_1 \in G_1, g_2, h_2 \in G_2 \text{ is a group.}

Theorem 33.

Theorem 34. Cyclic Groups with Same Order are Isomorphic
Let G and K be cyclic groups.Then we have GK    G=K.\text{Let } G \text{ and } K \text{ be cyclic groups.} \\ \text{Then we have } G \cong K \iff |G| = |K|.

Theorem 100. Maximal Ideal iff Quotient Ring is a Field

Theorem 1000. Generated Sets are Equivalent when their Generators are divisible of each other.
Let a,bR.Then a=b iff b=au,for some invertible uR.\text{Let } a, b \in R. \\ \text{Then } \langle a \rangle = \langle b \rangle \text{ iff } b = au, \\ \text{for some invertible } u \in R.

Theorem 1001. Generators are only Irreducible when the Generating Set is Prime
aR is irreducible iff a is prime.a \in R \text{ is irreducible iff } \langle a \rangle \text{ is prime.}

Theorem 1002. An ideal of Z is only maximal when its generator is prime
Let nN.Then n is prime iff nZZ is maximal.\text{Let } n \in \N. \\ \text{Then } n \text{ is prime iff } n \Z \trianglelefteq \Z \text{ is maximal}.

Theorem 1003. Generalization of Previous Theorem
In any Principal Integral Domain (PID),every non-zero prime ideal is maximal.\text{In any Principal Integral Domain (PID),} \\ \text{every non-zero prime ideal is maximal.}

Theorem 1004. Ott's 2nd Theorem
Let R be an ID and IR.Then I is prime iff R/I is an ID.\text{Let } R \text{ be an ID and } I \trianglelefteq R. \\ \text{Then } I \text{ is prime iff } R/I \text{ is an ID.}

Theorem 1005. Sort of Fundamental Theorem of Algebra
Let p(x)R[x] be a non-constant polynomial.Then  a field F containing an isomorphic copy of Rand αF such that p(α)=0.\text{Let } p(x) \in \R[x] \text{ be a non-constant polynomial.} \\ \text{Then } \exists \text{ a field } \mathbb{F} \text{ containing an isomorphic copy of } \R \\ \text{and } \alpha \in \mathbb{F} \text{ such that } p(\alpha) = 0.

Fun times in algebra